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In this short review, we provide an update of recent develop-
ments in Kramers’ theory of reaction rates. After a brief
introduction stressing the importance of this theory initially
developed for chemical reactions, we briefly present the main
theoretical formalism starting from the generalized Langevin
equation and continue by showing the main points of the
modern Pollak, Grabert and Hänggi theory. Kramers’ theory is
then sketched for quantum and classical surface diffusion. As an

illustration the surface diffusion of Na atoms on a Cu(110)
surface is discussed showing escape rates, jump distributions
and diffusion coefficients as a function of reduced friction.
Finally, some very recent applications of turnover theory to
different fields such as nanoparticle levitation, microcavity
polariton dynamics and simulation of reaction in liquids are
presented. We end with several open problems and future
challenges faced up by Kramers turnover theory.

1. Introduction

Hendrik Anthony Kramers published in 1940 arguably his most
famous article, entitled “Brownian Motion in a Field of Force
and the Diffusion Model of Chemical Reactions”.[1] Although his
contributions to science were numerous and include the so-
called Kramers-Kronig relations,[2] the WKB method[3] and much
more, it is his seminal contribution to rate theory that by far has
the most citations (over 7000), as may be inferred from the Web
of Science. The innovations in this paper are many. This was the
first implementation of the Langevin equation to rate theory.
Kramers derived here the phase space Fokker-Planck equation.
But perhaps it is the question that he posed but left
unanswered in his paper, which continues to intrigue the
Chemistry and Physics communities.

Kramers analyzed a very simple one-dimensional model to
obtain insight into how a surrounding affects the rate of a
chemical reaction. In his model, the surrounding influences the
reacting species through a frictional force. When it is strong, it
hampers the movement of the particle and therefore slows
down the reaction rate. Conversely, without interaction with
the surroundings, the particle typically does not have sufficient
energy to react. In the limit that the friction is weak, increasing
the friction increases the exchange of energy with the medium
and the rate increases. Considering the rate as a function of the
friction coefficient, it initially increases and then decreases – this
is the “Kramers turnover”. Kramers derived an expression for the
initial increase of the rate in the so-called energy diffusion-
limited regime as well as the decrease when the friction is
moderate to strong. This is known as the spatial diffusion-
limited regime since friction literally makes it more difficult for
the reacting species to move. However, he did not derive an

expression for the rate which would go smoothly from one
regime to the other, this is the Kramers’ turnover problem,
which is the topic of reviews[4,5] and to this very day inspires
and underlies many avenues of research and is a central topic
of this review.

The derivation of an expression that correctly describes the
turnover problem was made in two steps. Mel’nikov and
Meshkov[6] derived an expression that covered the range from
weak to moderate friction. Their theory will be denoted
henceforth as MM. Pollak, Grabert and Hänggi,[7] using the
method of Mel’nikov and Meshkov derived an expression that
covered the full range of friction and demonstrated that it is
not limited only to Ohmic friction but could be used also to
predict the rate when the dynamics is influenced by memory
friction. Their theory will be referred to as PGH theory.

Yet these solutions were not complete in many senses. The
solutions were correct in the limit that the reaction barrier
energy (V

þ
þ ) is large when measured in terms of the temperature

of the surrounding (kBT � b� 1). But what happens, as is often
the case when bV

þ
þ � 1? It was necessary to derive “finite

barrier” corrections to the activated decay rate.[8–10] Only rather
recently has a solution for the full finite barrier correction
problem, without ad-hoc assumptions, been presented.[11]

But there were additional problems. In the PGH formalism,
the motion of the particle occurs along what is known as the
unstable normal mode, and when considering motion along a
periodic potential as in surface diffusion, this effective potential
is no longer periodic. In its original form, the PGH theory could
not be applied to surface diffusion. This problem did not occur
in the Mel’nikov-Meshkov approach[12] which was therefore
used to provide insight into surface diffusion and especially the
theory of multiple hops in surface diffusion.[13,14] It is only in
recent years that this difficulty has been solved.[15]

An important parameter that appears in the turnover theory
is the (reduced in terms of kBT) energy loss δ. This is the energy
lost by the particle as it traverses the region outside of the
barrier, typically the stable well region. In the underdamped
limit, δ is small and the rate is proportional to it. In the
overdamped limit, it is large, and the rate is independent of it.
In the MM solution, the energy loss is typically proportional to
the product of the friction coefficient and the reduced barrier
height. As the friction increases, the energy loss increases
without bound, leading to values that can be substantially
greater than the barrier height and so it becomes unphysical.
This typically occurs for values of the (reduced in terms of the
barrier frequency) friction coefficient which are somewhat less
than the reduced barrier height. The PGH theory, in its original
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form, goes to a finite limit but has the unphysical property that
the PGH energy loss is not necessarily a monotonic increasing
function of the friction coefficient.

As described thus far, the turnover theory is a purely
classical theory. But in many cases, quantum effects cannot and
should not be ignored. The classical diffusion coefficient
diverges in the limit that friction vanishes, the quantum is
smaller.[16,17] Quantum tunneling cannot be ignored and so
should be incorporated into the theory. In fact, both quantiza-
tion of the harmonic bath underlying Kramers’ model is
possible and tunneling effects may be introduced by using
parabolic barrier transmission and reflection coefficients.[18] But,
of course, these are not valid at low temperatures, below the
so-called crossover temperature between tunneling-dominated
reaction and thermal activation.[19] The quantum turnover
problem is thus not yet fully solved.

Another aspect of the turnover theory that continues to
present a challenge is its extension to multi-dimensional
systems. Some attempts have been made in this direction,[20,21]

but the question remains open to this very day. Is it important?
Perhaps yes, as most reactions do not occur, or cannot be
realistically described, in terms of motion along only a one-
dimensional coordinate.

Thus far we have discussed only theory. Is the turnover
theory of any experimental relevance? Especially in recent years,
the answer to this question has become positive. The turnover
has been observed experimentally using levitated
nanoparticles.[22] It is at the center of attempts at understanding
reactions in microcavities[23–25] and there have been numerous
reports on its observation in reactions in liquids.[26–30] It has also
been used to gain insight into measured hopping distributions
in studies of surface diffusion.[31–34]

This long introduction should hopefully draw the reader
deeper into the turnover problem. For this purpose, in Section
2 we provide a short review of the theory in its latest version.
We then continue to discuss its application to surface
phenomena in Section 3. Various additional experimental and
theoretical applications are reviewed in Section 4 and we end
with a Discussion of the future of the theory, to cite Kramers:
“To do original physics and to get some results is as if one is
kissed by an angel”.[35]

2. General Theory

2.1. The Generalized Langevin Equation and the Normal
Mode Transformation

Underlying Kramers’ 1940 paper is the Generalized Langevin
Equation (GLE), in which the motion of a one-dimensional
particle with mass M and coordinate q is governed by the
dynamical classical equation of motion.

M€qþ
dV qð Þ

dq þM
Z t

0
dt0g t � t0

� �
_q t0
� �

¼ F tð Þ: (2.1)

Dots denoted time derivatives, g tð Þ is termed the friction
function, F tð Þ is a Gaussian random force with zero mean whose
correlation function is proportional to the friction function

hF tð ÞF t0
� �
i ¼ MkBTg t � t0

� �
: (2.2)

V qð Þ is the potential function. In the case of escape of a
particle from a well, as considered by Kramers, it has a well at qa

with harmonic frequency wa and a barrier at q ¼ 0 with barrier
frequency w

þ
þ . The barrier separates the well from a continuum

or perhaps a different adjacent stable well. Since the vicinity of
the barrier plays a major role in rate theory, it is worthwhile to
write down the potential as

V qð Þ ¼ �
1
2Mw

þ
þ2q2 þ V1 qð Þ (2.3)

where V1 qð Þ is termed the nonlinear part of the potential
function. Although this form is quite general, it does not include
all cases, for example a cusped barrier or a barrier whose form
around the barrier top is � q2n with n > 1. There are ways of
treating such difficulties, as described in Refs. [36, 37].

It is well understood that the generalized Langevin equation
may be derived as the continuum limit of a particle coupled
bilinearly to a harmonic bath.[38] This Hamiltonian has the form

H ¼
p2

q

2M
�
1
2

Mw
þ
þ2q2 þ V1 qð Þ

þ
1
2

XN

j¼1

p2
xj

mj
þmj wjxj �

cj

mjwj
q

� �2
" #

:

(2.4)
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pxj
; xj;wj and mj are respectively the momentum, coordinate,

frequency, and mass associated with the j-th oscillator. cj is the
coefficient that couples the j-th bath oscillator to the system.
The relationship of the Hamiltonian form to the generalized
Langevin equation is found by noting that for this discretized
form, one may derive an equation equivalent to the GLE. In this
discretized equation the friction function takes the form

g tð Þ ¼
X

j

c2j
Mmjw

2
j
cos wjt
� �

(2.5)

and the random force is

F tð Þ ¼
X

j

cj xj 0ð Þ �
cjq 0ð Þ
mjw

2
j

� �

cos wjt
� �

þ
pj 0ð Þ
mjwj

sin wjt
� �

� �

(2.6)

where t ¼ 0 denotes the initial time. One immediately sees that
due to the quadratic structure of the bath, any average over the
bath variables with the thermal distribution exp � bHð Þ is a
Gaussian average such that the random force is a Gaussian
random force. The continuum limit is readily obtained by
defining a spectral density of the bath modes

J wð Þ ¼
p

2

X

j

c2j
mjwj

d w � wj

� �
(2.7)

such that the friction is given in terms of the spectral density as

g tð Þ ¼
2

pM

Z ∞

0
dw

J wð Þ

w
cos wtð Þ: (2.8)

If one sets the nonlinear part of the potential equal to zero,
one is left with a Hamiltonian with a quadratic form, in which
the system mode has an imaginary frequency and all bath
modes have a real frequency. This quadratic form may be
diagonalized and one can show that this diagonalization will
lead to one mode – the unstable mode – with an imaginary
frequency and all other modes are stable.[39] The resulting
diagonalized Hamiltonian takes the form

H ¼
p2

1

2 �
1
2 l

þ
þ212 þ V1 qð Þ þ

1
2

XN

j¼1

p2
yj
þ l2

j y2j
� �

(2.9)

where the unstable normal mode is characterized by the (mass
weighted) coordinate 1 and momentum p1 and barrier
frequency l

þ
þ . The stable bath mass weighted normal mode

coordinates and momenta are denoted as yj and pyj
respectively

and have stable frequencies lj.
Since the diagonalization is analytic one finds an explicit

expression for the unstable normal mode frequency

l
þ
þ2 þ ĝ l

þ
þ

� �
l
þ
þ ¼ w

þ
þ2 (2.10)

where bg sð Þ denotes the Laplace transform (with frequency s) of
the time-dependent friction. This is the celebrated Kramers-
Grote-Hynes relation.[40] The normal mode transformation matrix
U has elements ujk; j; k ¼ 0; 1; ::: where the index 0 is chosen to
single out the unstable mode. One may then express the
system coordinate q in terms of the normal modes as

ffiffiffiffi
M
p

q ¼ u001þ u1s (2.11)

with

u1s ¼
X

j¼1

uj0yj (2.12)

and

u2
1 ¼ 1 � u2

00 ¼
XN

j¼1

u2
j0: (2.13)

The magnitude of the matrix element expressing the
projection of the system coordinate onto the unstable mode is
also known in terms of Laplace transforms of the friction
function:[7]

u2
00 ¼ 1þ

1
2

ĝ l
þ
þ

� �

l
þ
þ

þ
@ĝ sð Þ
@s
js¼l

þ

þ

0

@

1

A

2

4

3

5

� 1

(2.14)

and one notices that when the friction is weak this element is
close to unity so that u2

1 defined in the previous equation is
small. A central part of PGH theory, as compared to MM theory
is to develop a perturbation theory in terms of the small
parameter u1 rather than the reduced friction coefficient.

Just as there is a friction function for the system motion as
defined in Eq. 2.5, and a bath spectral density as defined in
Eq. 2.7 one also defines a normal mode friction kernel[41]

K tð Þ ¼
XN

j¼1

u2
j0

l2
j

cos ljt
� �

: (2.15)

and a spectral density of the stable bath normal modes

I lð Þ ¼
p

2

XN

j¼1

u2
j0

lj
dðl � ljÞ: (2.16)

It is a matter of some straightforward algebra to show that
Laplace transform of the normal mode friction kernel may be
expressed in terms of Laplace transforms of the friction as

K̂ sð Þ ¼
su2

00

l
þ
þ
2 s2 � l

þ
þ
2

� �þ
sþ ĝ sð Þ

w
þ
þ
2 w

þ
þ
2 � s2 � ĝ sð Þs

� �

 !

: (2.17)
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and that the spectral density of the stable modes is expressed
as

IðlÞ ¼ lRe K̂ðilÞ
� �

¼
lRe ĝ ilð Þ½ �

w
þ
þ
2 þ l2

� �2
þl2ĝ% ilð Þĝ � ilð Þ

: (2.18)

2.2. The Rate Expression

The turnover theory is summarized in a single expression for
the rate which involves a product of three terms.

G ¼ GTSTkSDU: (2.19)

The first term (GTST ) is the “standard” transition state theory
expression for the rate (assuming that the well is to the left of
the barrier, located at q ¼ 0):

GTST ¼
exp � bV

þ
þ

� �

2pMbð Þ1=2
R∞
� ∞ dq exp � bV qð Þð Þq � qð Þ

: (2.20)

The second term (kSD) is responsible for the effect of friction
on the spatial motion of the reacting particle. It is also known
as the Kramers-Grote-Hynes transmission factor[40]

k0SD ¼
l
þ
þ

w
þ
þ

(2.21)

and is the ratio of the normal mode barrier frequency to the
physical barrier frequency. As may be inferred from Eq. 2.10, it
is unity in the weak damping limit and goes to zero inversely
with the damping strength in the strong damping limit.

It is the third factor (Y), known as the depopulation factor,
which lies at the heart of the turnover theory. It accounts for
the exchange of energy between the system and the bath and
in the classical limit under discussion at this point, depends on
one property only – the average (reduced) energy d ¼ b DEh i

lost to the bath, as the system traverses from the barrier over
the well and back to the barrier. The expression, derived
originally by Mel’nikov and Meshkov is

U ¼ exp
1
2p

Z ∞

� ∞
dt

ln 1 � ~P t �
i
2

� �� �

t2 þ
1
4

 !

(2.22)

where

~P t �
i
2

� �

¼ exp � d t2 þ
1
4

� �� �

: (2.23)

In the underdamped limit, the energy loss δ� 1 and Y ’ d,
in the strong damping limit, the energy loss becomes large and
the depopulation factor goes to unity.

There is a central difference between the MM and PGH
theories. In the former, the dynamics is considered for the

system coordinate and the small parameter which underlies the
perturbation theory is the reduced friction coefficient. In the
latter, the dynamics is considered in the normal mode
coordinates and the reduced parameter is related to the
projection of the system coordinate onto the unstable mode
and vice versa, as also described below. Due to this difference,
the spatial diffusion factor comes out naturally in the PGH
formalism, while in MM theory it is inserted “by hand”. It is for
this reason that PGH theory is considered a full solution of the
turnover theory, while MM laid out the framework but gave
only a partial solution.

2.3. Modern PGH Theory

The central quantity which needs to be estimated is the
reduced energy loss d. This is implemented by perturbation
theory. In its modern version, the perturbation theory which
underlies PGH theory is based on defining a “small coordinate
shift”[15,42]

u1Ds ¼ u1s þ u00 �
l
þ
þ

w
þ
þ

 !

1: (2.24)

It is small since typically the difference ðu00 �
l
þ

þ

w
þ

þ

Þ is of the
same order as u1 and as such can serve as the basis for a
perturbation theory. The normal mode Hamiltonian, Eq. [2.9]
takes the form:

H ¼
p2

1

2 þ V
1
ffiffiffiffi
M
p

l
þ
þ

w
þ
þ

1þ u1Ds

 !" #

þ w
þ
þl

þ
þ1u1Ds

þ
1
2w

þ
þ2u2

1Ds2 þ
1
2

XN

j¼1

p2
yj
þ l2

j y2j
h i

:

(2.25)

Setting u1Ds ¼ 0 one obtains the zeroth order Hamiltonian
which governs the unstable mode dynamics:

Ho ¼
p2

1

2 þ V
1
ffiffiffiffi
M
p

l
þ
þ

w
þ
þ

1

 !

þ
1
2

XN

j¼1

p2
yj
þ l2

j y2j
h i

(2.26)

and one notes that for a parabolic barrier potential

V qð Þ ¼ � Mw
þ
þ2q2=2, the potential V 1ffiffiffi

M
p

l
þ

þ

w
þ

þ

1
� �

¼ �
1
2 l

þ
þ212, so

that in this limit the Hamiltonian reduces to the normal mode
form as given in Eq. 2.9 (with V1 qð Þ ¼ 0). The important result is
that the shape of the potential which appears in the zeroth
order Hamiltonian governing the unperturbed unstable mode
motion is the same as that of the original potential. If it is
periodic in the system coordinate, it is also periodic in the
unstable mode coordinate. It is this property which enabled the
extension of PGH theory to the general class of systems in
which a particle interacts with a periodic surface.
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But there is another physical aspect. One notes that the
potential for the unstable mode is typically “softer” as

compared to the system coordinate, since l
þ

þ

w
þ

þ

� 1. Equivalently,
the effective mass governing the unstable mode motion
ðMw

þ
þ2=l

þ
þ2Þ is increased as compared to the system coordinate.

For example, this leads to the observation that the effective
lattice constant in a periodic potential becomes larger. This
softening of the unstable mode dynamics explains many of the
qualitative features of the effect of friction on the dynamics of a
system.

With these preliminaries, it becomes a matter of some
algebra to derive the necessary equation for the energy loss, as
detailed in Ref. [42], and one finds

d ¼
b

2pM

Z∞

� ∞

dllI lð Þ

Z∞

� ∞

dt exp � iltð ÞV
0

1

l
þ
þ1t;0
ffiffiffiffi
M
p

w
þ
þ

 !�
�
�
�
�
�

�
�
�
�
�
�

2

(2.27)

where 1t;0 is the trajectory of the unperturbed unstable mode
as it traverses from the barrier and back, according to Newton’s
equation

€1t;0 ¼ �
@

@1t;0
V

1
ffiffiffiffi
M
p

l
þ
þ

w
þ
þ

1t;0

 !

: (2.28)

2.4. An Example: Escape from a Cubic Potential Well

To exemplify various aspects of the turnover theory, we briefly
consider the results for the escape rate when the potential has
the cubic form

V qð Þ ¼ �
Mw

þ
þ2

2
q2 1þ

q
q0

� �

(2.29)

such that the barrier height is

V
þ
þ ¼

2Mw
þ
þ2q2

0

27
: (2.30)

We consider the case of Ohmic friction

g tð Þ ¼ 2gd tð Þ (2.31)

where δ tð Þ is the Dirac “delta” function and g is the friction
coefficient. For Ohmic friction the spectral density J wð Þ ¼ gw

but the spectral density of normal modes is quite different:

I lð Þ ¼
lg

w
þ
þ
2 þ l2

� �2
þl2g2

: (2.32)

The trajectory of the unstable mode initiated from the
barrier top at t! � ∞, returning to it as t! ∞ is:

1t;0 ¼ �
w
þ
þ

ffiffiffiffi
M
p

q0

l
þ
þcosh2 l

þ

þ

2 t
� � : (2.33)

This may be compared to the zeroth order trajectory
appearing in MM theory

qt;0 ¼ �
q0

cosh2 w
þ

þ t
2

� � :
(2.34)

One notes that in PGH theory the path length is longer, of

the order of w
þ
þ=l

þ
þ

� �
q0 as compared to q0 and the time

evolution is slower, exemplifying the “softening” of the motion.
The expression for the PGH energy loss is:

dPGH ¼ 108pbV
þ
þn n � 1ð ÞM4 nð Þ (2.35)

where the parameter n is the ratio l1=l
þ
þ of the two solutions of

the Kramers-Grote-Hynes equation for Ohmic friction (Eq. 2.10)

n ¼
gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4w

þ
þ
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4w

þ
þ
2

p
� g

; (2.36)

the function M4 nð Þ is

M4 nð Þ ¼
2
5p
�

n2

3p
þ
2
p

n3 n2 � 1ð Þy0 nð Þ

�
2
p

n2 n2 � 1ð Þ �
1
p

n n2 � 1ð Þ

(2.37)

and

y0 nð Þ ¼
X∞

n¼0

1
nþ nð Þ2

: (2.38)

The MM energy loss has the much simpler form

dMM ¼
36
5 bV

þ
þ

g

w
þ
þ

: (2.39)

In the weak damping limit the MM and PGH energy losses
are identical, in the strong damping limit

lim
g!∞

dPGH ¼
432
35 bV

þ
þ : (2.40)

so that the PGH energy loss is finite. The ratio of the PGH
energy loss to the MM energy loss is plotted in Figure 1 as a
function of the reduced friction coefficient x ¼ g=w

þ
þ . One

notices that in the low friction regime - 0 � x � 0:68985 the
ratio is slightly greater than unity, reaching a maximum of
� 1:032 at x � 0:330. In this region, the PGH energy loss is
slightly larger than the MM energy loss so that the PGH rate in
this region may be slightly larger. Conversely, when the friction
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becomes larger, the PGH energy loss becomes significantly
smaller leading to a slightly smaller rate as compared with the
MM rate.

2.5. Miscellaneous Topics

As mentioned, the turnover theory is in a sense an asymptotic
theory, valid for large reduced barrier heights. However, finite
barrier corrections to the theory have been derived, both in the
spatial[8] as well as in the energy diffusion limited regimes.[11]

These extend the range of the theory so that it gives reasonably
good predictions for barriers as low as bV

þ
þ ¼ 2. The finite

barrier corrections have been tested numerically using classical
mechanics. It remains to be seen whether the quantum version
of the finite barrier corrections is accurate. For this purpose,
numerical quantum simulations are needed.

A second aspect has to do with memory friction. PGH theory
was tested against classical numerical simulations when the
friction was exponential in time. The results especially in the
limit of long memory friction point out the failure of MM theory
as compared to PGH. However, the theory is not complete, one
can show that there are long memory limits in which PGH also
fails, these are described in Ref. [43]. The central problem is that
in PGH theory a central assumption is that each sojourn of the
particle as it goes from the barrier and back is independent of
the previous one or the future one. In the limit of long memory,
this assumption can break down and a more sophisticated
treatment is called for.

The version presented here is the classical turnover theory.
It may be extended to temperatures above the crossover

temperature between quantum tunneling and thermal activa-
tion (bc ¼

2p

�hl
þ

þ

) by introducing the quantum energy-dependent
reflection and transmission coefficients for tunneling through a
parabolic barrier (see Eq. 3.15 below) into the master equation
governing the change of population as the particle traverses
from the barrier to the well and back. Such a quantum theory
has been tested against numerically exact computations in
Ref. [44]. However, the quantum version of the turnover theory,
especially in the context of surface diffusion has not been
seriously tested against numerically exact quantum simulations.
The upshot of all of this is that PGH theory has been improved
significantly in recent years yet there are some remaining
questions that are challenging.

3. Kramers’ Theory for Surface Diffusion

3.1. General Framework

In 1954 van Hove[45] showed that the scattering cross-section of
probe particles such as low energy neutrons by a system of
interacting particles can be expressed, within the Born approx-
imation, in terms of the so-called generalized pair-distribution
function G (r, t), depending on the space vector r and time t.
Given the pair distribution function, the scattering problem is
reduced essentially to a problem of statistical mechanics where,
in general, the nature of the scattered particles (neutron, light,
atoms, etc.) and the interaction potential with the interacting
system is no longer relevant.[46] This G-function gives us the
probability that given a particle at the origin and at time t ¼ 0,
any particle including the same one is to be found at the
position r at time t. In other words, the G-function also gives us
the space-time correlation function between the presence of a
particle at position r and at time t and the presence of a second
particle (the same one or a different one) at the origin and at
time t ¼ 0.

In the linear response theory, the scattering cross section
R(K, ω) is proportional to the so-called scattering law or
dynamic structure factor (DSF) S (K, ω) according to [45]

d2RðK;wÞ
dWdw

¼ ndF2SðK;wÞ (3.1)

where nd is the diffusing particle concentration on the surface, F
is the so-called atomic factor which depends on the interaction
potential between the probe particles such as the He atoms
and the adparticles or adsorbates and Ω is the final solid angle.
The energy transfer in this scattering is written as ω. Moreover,
in the surface literature, any variable parallel to the surface is
written in capital letters; thus, the scattering momentum
transfer along one of the symmetry directions of the surface is
written as K and the position on the surface of the adatoms as
R.

The corresponding inverse Fourier transform in time of S,
which is also a response function and an observable, is known
as the intermediate scattering function (ISF), I(K, t) (which

Figure 1. (color online) The ratio of the PGH to the MM energy loss for a
cubic potential with Ohmic friction is plotted against the reduced friction
coefficient x ¼ g=w

þ
þ . Note especially that the two estimates are rather close

as long as the friction coefficient is not too much greater than unity.
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should not be confused with the spectral density of normal
modes defined in Eq. 2.16)

SðK;wÞ ¼
1
2p

Z

dte� iwt IðK; tÞ; (3.2)

and the double inverse Fourier transform (in momentum and
energy) of S(K, ω) gives us the G(R, t)-function. Thus, one can
write

Gðr; tÞ ¼ ð2pÞ� 3N� 1

�

Z

dKe� iK:r
XN

l;j¼1

< e� iK:Rlð0Þ:eiK:RjðtÞ >;
(3.3)

where < : > stands for thermal (Boltzmann) averages or
quantum expectation values depending on whether one is
considering classical or quantum scattering. In contrast to
neutron scattering where coherent and incoherent scattering
can take place, this atom scattering is fully coherent. Within the
classical approximation, Rl (0) and Rj (t) represent the initial
location of particle l and the classical trajectory of particle j
along the surface, respectively. In the quantum realm, these
vector positions are replaced by the corresponding position
operators.

Two well-established surface experimental techniques are
used to measure the intermediate scattering function and the
dynamical structure factor. These are the so-called quasi-elastic
He atom scattering (QHAS)[47,48] and neutron scattering
(QENS)[49] methods which overlap in spatial and time
resolution.[50,51] QENS is, in general, more convenient for
processes occurring in bulk and QHAS is essentially sensible for
surfaces. More recently, these two techniques have been
complemented by using spin-echo (SE), HeSE[50,51] and neutron
spin-echo NSE techniques.[49]

A proper theoretical framework to process the experimental
results and extract relevant information about the physical
systems of interest such as diffusion coefficients, jump distribu-
tions, escape rates, etc. is needed. A full description of the force
fields (adsorbate-adsorbate and adsorbate-substrate interac-
tions) involved is necessary in principle. The Langevin formalism
or its generalization to include memory effects is widely applied
starting from the system-bath Hamiltonian (Eq. 2.4) also known
as the Zwanzig-Caldeira-Leggett Hamiltonian.[38,52] Stochastic
classical trajectories R(t) are then calculated for each adsorbate,
except for very light adsorbates where surface tunneling can be
present due to the corrugation of the surface and the classical
approximation is no longer valid. If the surface coverage is
small, the dynamics of only one adsorbate is studied by
averaging over many trajectories and this is the case for which
the Kramers turnover theoretical framework is relevant. Ana-
lytical expressions for I and S are readily obtained for flat and
corrugated surfaces[53] or with memory friction[54] within the so-
called Gaussian approximation. It is also possible to extend the
theory to include the effect of (low) coverage through a model
known as the interacting single adsorbate (ISA) model where

the added interaction among adsorbates is replaced by a shot
noise simulating collisional friction.[55,56]

Finally, it is worth mentioning that two extreme time
regimes are well characterized for this open dynamics, the
ballistic regime, at very short times, where the dynamics is
friction and noise free and the diffusive regime, at very long
times, where thermal equilibrium is finally reached with the
surface. In the first regime, both response functions are
Gaussian functions and, in the second regime, I is an
exponential function and S is a Lorentzian function.

As already mentioned, when dealing with light adparticles,
one cannot ignore quantum effects. Position operators do not
commute at different times (bRlð0Þ and bRlðtÞ) however an
extension of the methodology used for classical diffusion can
be still used to provide reasonable analytical expressions.[57] A
second approach is to consider stochastic quantum trajectories
within the Bohmian framework.[58] A widely used method for
dealing with quantum open systems is the so-called system-
plus-environment approach. The reduced density matrix in the
coordinate representation describing the system of interest is
obtained by tracing out the degrees of freedom of the
environment. A master equation is then derived which contains
both frictional and thermal effects, and is known as the
Caldeira-Leggett (CL) master equation[52] which is of Markovian
type. The corresponding diagonal matrix elements give the
quantum probabilities and the off-diagonal elements, the so-
called coherences. Time evolution of coherences gives us an
indication of how the decoherence process is gradually
established leading to certain timescales of the system under
study and exponential suppression of spatial interference terms.
The CL formalism is used to describe the motion of a quantum
Brownian particle linearly coupled to an Ohmic environment in
the weak-coupling and high-temperature limits.[59,60]

3.2. Intermediate Scattering Function and Dephasing Rates

The HeSE surface scattering technique provides a direct
measurement of dynamical correlations on an atomic scale in
both position and time. The ISF is an observable and in the
diffusive regime it is an exponentially decaying function of time

IðK; tÞ / e� aðKÞt: (3.4)

The exponential decay is ruled by what is known as the
dephasing rate, α. This rate depends explicitly on the
momentum transfer and, in general, the initial conditions of the
particles and the surface temperature. From this observable, a
detailed microscopic picture of motion on the surface can be
extracted once a theoretical model or theory is chosen for such
a goal. Several alternatives are available in the literature.

The QHAS surface technique has also been successfully
applied to study the diffusion of single atoms and molecules on
metal surfaces where the observable is the dynamic structure
factor which has a Lorentzian shape (the so-called quasi-elastic
peak or Q-peak)
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SðK;wÞ /
aðKÞ

w2 þ aðKÞ2
: (3.5)

With this line shape, the diffusion coefficient D can be
extracted from the full width at half maximum (FWHM) ΓFWHM of
the quasielastic peak with respect to ω (around w ¼ 0) at small
K values, which should be equal to GFWHM ¼ 2D K2 so that

SðK;wÞ /
D K2

w2 þ D2K4 : (3.6)

In general, the FWHM is a function of K. This coefficient can
also be extracted from the long time limit of the position
variance:

D ¼ lim
t!∞

1
4 t hjRðtÞ � Rð0Þj2i: (3.7)

Numerical simulations of the ISF are implemented using
several techniques: the standard or generalized Langevin
equation, the master equation of the reduced density matrix
within the CL framework and the Ito differential equation also
known as the stochastic wave function method. Once the ISF is
calculated, the DSF is obtained by a simple Fourier transform.

3.2.1. The Chudley-Elliot Model

One of the most widely used models used to extract jump rates
and jump distributions from the ISF or DSF is due to Chudley
and Elliot.[61] An activated atom surface diffusion is assumed
and instantaneous jumps between different sites are consid-
ered. Under these assumptions, a master equation for the pair-
distribution function in space and time and for a simple Bravais
lattice reads as

@GðR; tÞ
@t ¼

X

j

1
tj
½GðRþ j; tÞ � GðR; tÞ�; (3.8)

where tj is the average time between successive jumps over
the two-dimensional vector j and the summation runs over all
lattice vectors. If the time for a simple jump is very short
compared with the time τ between successive jumps, the total
jump rate can be written as 1=t ¼

P
j 1=tj, with tj ¼ t� j. Due to

the linearity property of the Fourier transform, Eq. 3.8 is written
as

@IðK; tÞ
@t ¼ � 2IðK; tÞ

X

j

1
tj
sin2

j � K
2

� �

; (3.9)

whose solution is

IðK; tÞ ¼ IðK; 0Þe� aðKÞjtj; (3.10)

with the dephasing rate given by

aðKÞ ¼ 2
X

j

1
tj
sin2

j � K
2

� �

: (3.11)

The FWHM of the S-function is given by

GFWHMðKÞ ¼ 2k
X

j

Pj½1 � cosðj � KÞ�: (3.12)

Here, k ¼ 1=t and Pj is the relative probability for a jump
with a displacement vector j. This instantaneous jump model is
a good approximation for barriers where V

þ
þ=kBT � 3.

3.2.2. Quantum Kramers’ Theory of Activated Surface Diffusion
above Crossover Temperature

One of the main drawbacks of the Chudley-Elliott model is that
in practice, the probabilities PJ are fitting parameters and not
known apriori. It is here that Kramers’ theory provides a
prediction for all jump probabilities, based on knowledge of a
single parameter, namely the reduced energy loss as the system
moves from one barrier to the next. The turnover theory as
applied to surface diffusion is based on a master equation for
the populations in the wells, governed by an energy exchange
kernel. In its original formulation, the theory considered that a
transition would be possible only if the energy of the particle is
greater than the barrier height. In later developments, this
demand was relaxed and a transmission and reflection proba-
bility was introduced mainly in the form of a parabolic barrier
probability.[18] This simplification enables inclusion of tunneling
and above barrier reflection in the analytic solution of the
turnover problem. In addition, it is not necessary to consider a
classical bath, but rather harmonic quantum bath. As a result,
the Kramers-Grote-Hynes spatial diffusion prefactor is replaced
by the Wolynes prefactor.[62,63] The PGH quantum theory for
surface diffusion in its modern form is given in Ref. [64]. All this
results in a semiclassical-like theory since the zeroth-order
motion of the unstable mode is still treated as classical.

The starting point for the evaluation of escape rates, jump
distributions and diffusion coefficients is the stationary flux of
particles at reduced energy e ¼ E= kBTð Þ exiting each well at
either the barrier to the left of the well or to its right. When
considering quantum surface diffusion along one dimension
one may write down a steady state equation that describes the
relationship between the number of particles per unit energy

and per unit time hitting the right (left) fþj f �j
� �

barrier of the jth

well with positive (negative) velocity

fþj eð Þ ¼

Z ∞

� ∞
de0P eje0

� �
f �j e0
� �

R e0
� �

þ fþj� 1 e0
� �

T e0
� �h i

: (3.13)

Here, P eje0
� �

is the conditional probability that a particle

initiated at a given barrier with energy e0 will arrive at the
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adjacent barrier with energy e. The kernel has a Gaussian
form[12]

P eð je0Þ ¼
1
ffiffiffiffiffiffiffiffiffi
4pd
p exp

ðe � e0 þ dÞ2

4d

" #

; (3.14)

with δ being the reduced average energy loss to the bath as
the particle traverses from one barrier to the next. Its double-
sided Laplace transform is given in Eq. 2.23. The resulting theory
is analytic if one approximates the reflection and transmission
coefficients using the parabolic barrier expressions

R eð Þ ¼
1

1þ exp aeð Þ
; T eð Þ ¼

exp aeð Þ

1þ exp aeð Þ
; a ¼

2p

�hbl
þ
þ

: (3.15)

It is convenient to define a friction-independent “quantality
parameter”

b ¼
2p

�hbw
þ
þ

¼ a
l
þ
þ

w
þ
þ

; (3.16)

The relevant classical results are obtained from the quantum
ones by taking the limit �h! 0, or equivalently a; b! ∞.

The boundary conditions on the fluxes are that initially, the
particle is located in the j ¼ 0 well with a thermal distribution
so that

f�j eð Þe!� ∞¼ dj0
C

2p�hb
exp � eð Þ: (3.17)

In the spatial diffusion-limited regime, only nearest neigh-
bor hops are allowed. The coefficient C is chosen so that in this
limit, the rate of escape from the initial well is just twice the
spatial diffusion rate (Gsd) for escape over one of the two
adjacent barriers and

C ¼ Gsdsin
p

a

� � 2p

l
þ
þ

: (3.18)

The spatial diffusion escape rate is then

Gsd ¼ GTST
l
þ
þ

w
þ
þ

kFBX; (3.19)

where kFB is the finite barrier correction to the rate in the spatial
diffusion-limited regime,[65] in its classical limit.[8] GTST is the
escape rate estimate without taking frictional effects into
account, that is

GTST ¼
2 exp � bV

þ
þ

� �

2pMbð Þ1=2
R∞
� ∞ dq exp � bV qð Þð Þq qþ l

2

� �
q

l
2 � q
� � : (3.20)

The factor of two in the numerator comes from the fact that
the particle can escape from the well in either direction. Ξ – the
Wolynes factor – is the ratio of the quantum partition function

at the barrier to that of the well expressed in terms of the so-
called Matsubara frequencies

~wn ¼ 2pn= b�hð Þ ¼ nbw
þ
þ (3.21)

as[62]

X ¼
Y∞

n¼1

w2
a þ ~w2

n þ ~wnĝ ~wnð Þ

� w
þ
þ
2 þ ~w2

n þ ~wnĝ ~wnð Þ
: (3.22)

In the classical limit b! ∞, all the Matsubara frequencies
go to infinity and X ! 1.

Since we chose the j ¼ 0 well to be populated while all
other wells are not, we have the symmetry property

f�j eð Þ ¼ f�
� j eð Þ: (3.23)

Furthermore, the trapping rate in the j-th well is

Gj ¼

Z∞

� ∞

deT eð Þ fþj� 1 eð Þ þ f �jþ1 eð Þ � f �j eð Þ � fþj eð Þ
h i

: (3.24)

From the double-sided Laplace transform of the Gaussian

kernel (P0 eje0
� �

¼ P0 e � e0
� �

)

~P0 isð Þ ¼ exp d s2 þ sð Þ½ � (3.25)

and the function

G is; kð Þ ¼
1 � ~P2

0 isð Þ

1þ ~P2
0 isð Þ � 2~P0 isð Þcos kð Þ

; (3.26)

the hopping rates are analytically expressed as[64]

Gj ¼ �
Gsd

p

Z2p

0

dk cos jkð Þ sin2
k
2

� �

� exp
sin p

a

a

Z∞

� ∞

dt
lnG t �

i
2 ; k

� �

cosh 2 pt

a

� �
� cos p

a

� �

0

@

1

A:

(3.27)

The diffusion coefficient is expressed in terms of the rates as

D ¼
1
2

l2
X∞

j¼� ∞

j2Gj ¼
1
2

G l2h i: (3.28)

where the escape rate G ¼ � G0 and < l2 > is the mean squared
hopping length, where the averaging is over the probability
Gj=G for a hop of length l. Carrying out the summation
analytically one finds a relatively simple expression for the
diffusion coefficient
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D ¼
1
2Gsdl2 � exp

1
a

Z∞

� ∞

dt ln
1þ ~P0 t �

i
2

� �

1 � ~P0 t �
i
2

� �

" #

F að Þ

0

@

1

A (3.29)

with

FðaÞ ¼
sin p

a

cosh 2 pt

a

� �
� cos p

a

� � : (3.30)

This expression includes the contributions of tunneling
through the barrier and above barrier reflection as expressed by
means of the quantality parameter a. It does not include finite
barrier corrections which have been discussed in Ref. [64]. A
well studied example is based on the cosine periodic potential

V qð Þ ¼ �
V
þ
þ

2 cos
2pq

l

� �

þ 1
� �

(3.31)

such that V
þ
þ is the barrier height for escape, the barrier

frequency squared is

w
þ
þ2 ¼

2p2V
þ
þ

Ml2 : (3.32)

The energy loss is obtained from Eq. 2.26 which is based on
the classical trajectory of the particle initiated at the barrier
energy as it goes from one barrier to the next. For the cosine
potential of Eq. 3.31 this trajectory as would be used in MM
theory is

tan
pqt

2l

� �
¼ exp w

þ
þ t

� �
; (3.33)

while for PGH theory and the effective Hamiltonian governing
the unstable mode motion, it is

tan
p1t

2l1

� �

¼ exp l
þ
þ t

� �
; (3.34)

and one notes the use of the renormalized lattice length l1. For
the improved PGH theory, one finds that the energy loss is[15]

d ¼ 2bV
þ
þ n � 1ð Þ 2nþ 1 � n2ð Þ

X∞

k¼0

1
nþ1
2 þ k

� �2

" #

; (3.35)

where the parameter ν has been defined in Eq. 2.36. This
function is a monotonically increasing function of the friction
coeffiient. In the small friction limit, it is identical to the MM
estimate

lim
g!0

d ¼ 4bV
þ
þ

g

w
þ
þ

¼ dMM; (3.36)

and in the large friction limit

lim
g!∞

d ¼
16
3 bV

þ
þ : (3.37)

This is not identical to the MM result which diverges,
however, we do note that it is larger than the barrier energy
and so it too is not physical. This poses the challenge of finding
a way of obtaining an estimate which is never greater than the
barrier height.[64]

PGH theory contains a few parameters, some of them
structural such as the barrier height and frequencies, and the
other ones are dynamical – the friction coefficient and the energy
loss. One way of obtaining these parameters is through fitting
experimental data, but note the limited number of parameters as
compared for example with the Chudley-Elliott model.

The quantum version of the theory leads to insight into the
effects of quantum mechanics on surface dynamics. One of the
most striking effects is the reduction of the diffusion constant due
to quantality in the low friction regime. This leads to an inverse
isotope effect, the heavier the mass of the diffusing particle, the
faster is the diffusion.[16] This effect occurs only in the energy
diffusion-limited regime. “Normal” isotope effects, where the
diffusion of H is faster than that of D have been reported.[66] An
interesting question in this regard is, can one study experimentally
the diffusion on a surface where the friction is sufficiently low so
as to induce the inverse mass effect?

As already mentioned, the turnover theory is based on a
mixed classical quantum mechanical description of the dynam-
ics. The motion of the unstable mode as the particle traverses
the well is treated classically. Although our experience indicates
that this is a good approximation in the quantum limit,
numerically exact quantum simulations are needed based on,
for example, the stochastic wave function method.[67] One
hopes that the present theory will serve as a benchmark for
such simulations which could also be used to explore quantum
effects on the diffusion dynamics at temperatures below the
crossover temperature between quantum deep tunneling and
thermal activation. Furthermore, turnover theory is based on
incoherent tunneling through the barriers. As the friction and
bath temperature become sufficiently low one may expect that
coherence effects in the form of the band structure of the
quantum levels of the periodic potential will further affect the
quantum hopping distribution and escape rate. They are not
interesting in the context of the parameter range studied here,
where the temperature is sufficiently high so that deep
tunneling effects may be ignored. However, these too could
and should be studied using numerically exact simulations since
the low temperatures needed are accessible experimentally.

3.2.3. Kramers’ Theory of Activated Surface Diffusion in the
Classical Limit

From the previous quantum analysis particularized to a cosine
potential, the corresponding classical analysis is quite straight-
forward. Thus, from l, the lattice constant of the surface, and
the barrier height V

þ
þ ¼ 2 V0, the energy loss within MM theory
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is written as in Eq. 3.36 where for the cosine potential the
harmonic well and barrier frequencies are identical and given as
w
þ
þ ¼ w0 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=m l2

p
.

Using again a discrete Fourier transformation in j and a
Laplace transform in energy and the change of variable
t ¼ tan x=2, the partial rate in the classical limit is[12,16]

Gj ¼ �
GSD

p

Z 2p

0
dk sin2

k
2

� �

cosðjkÞ

� exp
2
p

Z
p=2

0
dx ln

1 � P2ðxÞ
1þ P2ðxÞ � 2PðxÞ cosðkÞ

� �� �

;

(3.38)

where ΓSD is the classical spatial diffusion escape rate assuming
that the well is harmonic[1]

GSD ¼
l
þ
þ

w
þ
þ

w0

p
e� V

þ

þ =kBTð Þ: (3.39)

With the change of variable t ¼ tan x=2ð Þ (see Eq. 2.23) the
function P(x) is particularized as

P xð Þ ¼ exp �
d

4 cos2 xð Þ

� �

: (3.40)

The diffusion coefficient is then expressed in closed form as

D ¼ DSDU � 1exp
2
p

Zp=2

0

dx ln 1þ P xð Þ½ �

8
<

:

9
=

;
; (3.41)

with DSD � GSDl2=2 denoting the diffusion coefficient in the
(single hopping) spatial diffusion regime, and Y is the depopu-
lation factor for motion in the metastable well given in Eq. 2.22.

Following the same procedure as previously used in the
Chudley-Elliot master equation model (see Eq. 3.8) except that
the parameters 1

tj
are replaced by the hopping rates Γj given in

Eq. 3.38, using the discrete Fourier transform

bG kð Þ ¼
X∞

j¼� ∞

ei kjGj: (3.42)

assuming that in the diffusive regime the dynamical structure
factor is Lorentzian, one finds an explicit expression for the
FWHM of the DSF[14,68]

GFWHM kð Þ ¼ 2bG kð Þ ¼ 4Gsd sin
2 k
2

� �

�

� exp
2
p

Z
p=2

0
dx ln

1 � P2 xð Þ
1þ P2 xð Þ � 2P xð Þ cos kð Þ

� �� �

:

(3.43)

Thus, when comparing the turnover theory with the experi-
ment, information about the energy loss, barrier height, friction
coefficient, barrier frequency, and spatial diffusion rate can be
extracted. As pointed out above, this theory is a one-parameter
theory – the energy loss δ rather than the multiparameter
fitting of hopping rates, needed for the “standard” implementa-
tion of the Chudley-Elliot model. In principle, the turnover

theory as such is valid only when the reduced barrier height
V
þ
þ= kBtð Þ is much larger than unity. When it is small, typically

smaller than 5 one may extend the theory using finite barrier
corrections for the spatial diffusion coefficient as well as the
depopulation factor. Details of the derivation can be found in
Refs. [11,69, 70].

As an example of the application of the turnover theory, we
bring results for the diffusion of Na atoms on a Cu(001) surface
by assuming a one-dimensional cosine function for the
corrugation. In this case, the classical theory is sufficient due to
the large mass of the atoms involved. The lattice constant is
l ¼ 2:56A∘ and the barrier height V

þ
þ ¼ 82:8 meV. In Figure 2,

escape rates (in ps� 1) are plotted as functions of the reduced
friction coefficient ðg=w0) at two surface temperatures,

Figure 2. Escape rates k in (ps� 1) are plotted as a function of the scaled
friction g=w0 for the symmetric one-dimensional cosine potential simulating
the motion of Na atoms on a Cu(001) lattice. The energy barrier V

þ
þ

¼ 82:8meV at surface temperature T ¼ 110 K and T ¼ 200 K . In both panels,
Langevin numerical simulations are shown as red circles with error bars, as
well as Kramers’ theory without (black solid curve) and with the finite barrier
correction term (black dashed curve).
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T ¼ 110; 200 K.[68,71] In these two cases the reduced activation
barrier (assuming 82.8 meV) V

þ
þ= kBTð Þ ¼ 8:7; 4:8 respectively,

large enough to consider the escape as activated and Kramers’
theory should be a good approximation. As can be seen in this
figure, the decay rate k obtained by Langevin simulations is
well approximated by Kramers’ theory. The agreement becomes
quantitative over the whole friction range when including the
finite barrier correction (FBC).

For the same system, jump distributions are plotted in
Figure 3 and the same two surface temperatures T ¼ 110 K and
200 K . In both plots the reduced friction coefficient is 0.15.[68]

Blue bars are Langevin simulation results and white bars are
from Kramers’ turnover theory. In this figure, it is clearly seen

that the probability of long jumps becomes more important as
the temperature increases. The comparison between simulation
and theory is quantitative.

As has been shown elsewhere,[34] when the (reduced)
energy loss for motion from one barrier to the next is unity or
greater, one may expect the hopping distribution to become
exponential:

Pj;1 j � 2ð Þ �
2ðj � 1Þ� 3=2

ffiffiffiffiffiffiffiffiffi
pbd

p exp � j � 1ð Þbd=4½ � (3.44)

At a surface temperature of 200 K, hopping probabilities up
to j ¼ 4 are still observed, as expected from this expression.

The dependence of the diffusion coefficient on the reduced
friction for the diffusion of Na on the Cu(001) surface, using the
same parameters as above is plotted in Figure 4, at the two
surface temperatures 110, 200 K. Solid black curves as given in
Eq. 3.41 with finite barrier corrections. Red squares are Langevin
diffusion coefficients obtained from the Einstein relation, Eq. 3.7.
As before, the agreement between both sets of results is good.

This example, modeled for the diffusion of Na on a Cu(001)
surface exemplifies the utility and viability of the turnover theory
for analyzing theoretical (for example, from Langevin simulations)
and experimental results on surface diffusion. We stress that the
theory is reliable provided that one includes finite barrier
corrections when the reduced barrier height is lower than � 5 but
will fail when lower than � 2. Another drawback of the theory in
its present form is that it is limited to low surface coverages, that
is when adsorbate-adsorbate interactions can be neglected.
However, it may be extended to moderate coverage when
combined with the ISA model mentioned earlier. Finally, more
work is needed to extend the turnover theory when the diffusive
dynamics is not one-dimensional.

4. Applications of Turnover Theory

4.1. Nanoparticle Levitation

Experimentally creating the conditions needed for unequivocal
observation of Kramers’ turnover is not a trivial challenge. One of
the clearest experimental observations in recent years has been
the study of levitated nanoparticles trapped in an optical potential
by Rondin et al.[72] Conceptually, the experiment is straightforward.
A 68 nm silica particle is trapped in an optical double well
potential. The chamber is in principle a vacuum chamber, so that
one may allow the addition of an inert buffer gas to enter it with a
known pressure. The “instantaneous” location of the particle is
monitored interferometrically with a weak laser beam (532 nm). In
the absence of the buffer gas, the particle, trapped in one of the
wells would stay there “forever”. Allowing a low pressure gas to
enter will lead to exchange of energy between the nanoparticle
and the small gas molecules. The dynamics is well modeled in
terms of a Langevin equation, whose friction coefficient is
proportional to the buffer gas pressure.

The results of the measurement are a clear turnover of the
dwell time in the well as a function of the pressure, decreasing

Figure 3. Jump length probability distributions are shown for the diffusion
of Na on a Cu surface. All parameters are as in Figure 2. The upper panel is
at T ¼ 110 K and the lower at 200 K. Blue bars are Langevin results adapted
from Ref. [68] and white bars are obtained using Kramers turnover theory.
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at low pressure and then increasing when the pressure is
sufficiently strong. Moreover, within the experimental uncer-
tainties the authors find quantitative agreement between the
experiment and MM theory, where it should be stressed, that in
principle, all the parameters needed for the application of the
theory are obtained from the experiment. On the other hand, in
this case, the Hamiltonian representation of the Langevin
equation as in Eq. 2.4 is not physical but only a mathematical
construct. The “instantaneous” collisions between the gas
particles and the nanoparticles lead within a binary collision
theory to a Langevin equation, however, the physics is not that
of coupling to a harmonic bath.[73]

This class of experiments has been then further explored to
include non-equilibrium effects on the rates, such as the
application of an external force on the nanoparticle, which is
achieved by charging it and placing it in an electrostatic
potential.[74] It has also been used to explore transition path
dynamics,[75] a topic of intense interest when considering
protein folding. Another twist on this class of experiments is to
immerse the nanoparticle in a fluid and study the effects of
Newtonian and non-Newtonian fluids on the transition dynam-
ics as expected from the turnover theory.[76]

4.2. Microcavity Polariton Dynamics

Experimental investigations of chemical reactivity in microcavities
have challenged theory in many ways. A fundamental observation
is that the electromagnetic field of an optical cavity can
profoundly influence the dynamics of molecules in what is known
as the strong coupling limit. Especially intriguing is the orders of
magnitude effect on activated reactions in liquid. As reported in
Refs. [76,77] tuning the cavity electromagnetic frequency such
that it is in resonance with a vibrational frequency of a reacting
molecule, may change the reactivity significantly, even by an order
of magnitude. The experimental observations continue to chal-
lenge theory. However, Kramers’ turnover theory turns out to be a
fundament of many theoretical attempts to understand the
polariton-induced dynamics.

Yang and Cao[78] used the Hamiltonian formulation of the
GLE as in Eq. 2.4, adding to it coupling to the cavity field and
proceeded to study the effects of this coupling on the rate in
the spatial diffusion limited regime, that is by using the Wolynes
prefactor as in Eq. 3.22. Lindoy et al.[79,80] further extended this
approach so that it covers the whole friction range, demonstrat-
ing with the turnover theory that the weak friction case causes
sharper and larger changes in the rate than in the spatial
diffusion-limited regime. They also conclude that quantum
effects cannot be ignored. Similar results, based on the turnover
theory were found in Ref. [81].

These works were limited to a single system, one of the
characteristics of the polariton dynamics is that it seems that a
large number of systems are coupled coherently to enhance
the effect. Du et al.[82] made an attempt to use PGH theory to
study the collective phenomenon but in their model, collectivity
reduced the magnitude of the effect rather than enhance it.
The last word on this exciting topic is not yet in, but it would
seem that Kramers’ turnover theory and its formalism may play
a central role in finally obtaining a “good” theory for micro-
cavity enhanced reaction dynamics.

4.3. Simulations of Reactions in Liquids

The first theoretical observation of Kramers’ turnover in simula-
tions of reactions in liquids was reported in 2008 by Mueller
et al.[83,84] for the Li-NC < ->LiCN isomerization reaction in a bath
of Ar atoms as a function of the density of the Ar atoms.
Comparison of the simulation results with PGH theory was

Figure 4. Diffusion coefficients in (cm2/s) are plotted as a function of the
reduced friction for the diffusion of Na on the Cu(001) surface at two surface
temperatures 110 and 200 K . Solid black curves are from Kramers’ turnover
theory.
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favorable. This model system continues to be a rich testing ground
for PGH theory even when the barrier is low, as discussed in
Ref. [85]. The turnover was also observed in simulations of model
isomerization reactions in Lennard-Jones solvents in Ref. [86].
Shigemitsu and Ohga[87] used PGH theory to analyze molecular
dynamics simulations of the isomerization of azobenzene, how-
ever, their central conclusion was that in reality, the reaction
occurs in the spatial diffusion-limited regime so that the turnover
theory as such is not really that important.

More recently, Hori et al.[88] considered frictional effects on
the folding rates of various RNA molecules (eg human
telomerase hairpin) as a function of solvent viscosity. They
observed a Kramers turnover, however, they used a more
primitive turnover theory expression which extrapolates be-
tween the low and high friction limits in their analysis. A similar
study was reported a bit earlier by Dupuis et al.,[89] however,
here only the spatial diffusion-limited regime was considered.
Kramers’ turnover theory has been also used to unravel the
mechanisms underlying the dihedral dynamics of butane in
water, which turns out to be rather insensitive to the viscosity
of the water surroundings.[90] All these various applications
seem to indicate that Kramers’ turnover theory will continue to
show up in the various simulations of molecular dynamics
influenced by an environment. What is though missing most in
the chemistry context is experimental observation for reactions
in liquids. Since the turnover appears through the prefactor it is
masked by the Arrhenius exponent, and one needs rather
accurate measurements to resolve it.

5. Discussion

In many ways, the turnover theory in its present form has solved
the original Kramers turnover problem. The turnover theory is
derived, and corrections terms to improve it in the limit of low
barriers have been presented and successfully tested. However,
like any theory, this is not the end of the story, challenges remain.
The quantum version of the theory in which the bath is treated
quantum mechanically and tunneling is possible is still limited in
various aspects. The most obvious one is that in its present form,
the theory is valid only above the crossover temperature between
tunneling and thermal activation. It should be possible to extend
it to lower temperatures, following the same perturbation theory
used by Hänggi and Hontscha for the spatial diffusion-limited
regime.[91] In the deep tunneling regime, we know from the
numerical simulations of Ref. [44] that the turnover disappears as
the particle may escape from the well without any interaction
with the surroundings through quantum tunneling. A theory that
covers the turnover theory for the whole range of temperatures
remains an open challenge.

It is relatively straightforward to verify the classical turnover
theory by comparing it with classical numerical computations.
However, quantum benchmarks are rather limited to date. The
escape rates have been tested by Topaler and Makri[44] however
especially the turnover theory for diffusion remains to be
compared with numerically exact quantum computations. Of
special interest in this context is the observation that for light

atom surface diffusion, one should expect to find in the weak
damping regime a shortening of the hopping length due to
quantum above barrier reflection.[16] This phenomenon leads to
an inverse isotope effect which has yet to be observed
experimentally.

Another topic of interest is the effect of external forces on
the rates. The turnover theory at this point has not been
extended to include external non-equilibrium effects. On a
more formal footing, the turnover theory as such is based on a
quadratic expansion of the force field about the potential top. A
different question is what happens when the potential is
cusped or quartic or any other form which is not parabolic? In
the spatial diffusion-limited regime, this question has been
answered to some extent[36,37] but only in the classical limit. The
theory has not been tested against quantum benchmarks.

A turnover should also be observed when considering the
effect of friction on non-adiabatic transitions. Some progress
has been made in the spatial diffusion-limited regime.[92–95]

However, the turnover theory as formulated at present is
limited to adiabatic, single-surface dynamics. Both theoretical
extensions of the turnover theory, as well as numerically exact
quantum simulations, would be needed to verify the effect.

The turnover theory as such presents some fundamental
progress in rate theory. However, the bottom line is how
“important” it really is. We have reviewed some recent
experimental verifications and applications of the theory,
however, the real challenge is to demonstrate the applicability
of the theory and the insight it gives toward understanding
chemical dynamics, whether in the form of bimolecular or
unimolecular reactions or within the context of surface
phenomena. In theory, it is always possible to change the
friction coefficient, in nature, this is a much more challenging
task and perhaps is the reason why it is difficult to apply the
theory to experiments.
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PERSPECTIVE

Illustration of Kramers’ turnover
theory for surface diffusion. Escape
rate is plotted as a function of the
scaled friction for a cosine potential
simulating the one-dimensional
motion of Na atoms on a Cu(001)
lattice at surface temperature
T=110 K.
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