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Abstract: In this work, we proposed a smooth transition wave equation from a quantum to classical
regime in the framework of von Neumann formalism for ensembles and then obtained an equivalent
scaled equation. This led us to develop a scaled statistical theory following the well-known Wigner–
Moyal approach of quantum mechanics. This scaled nonequilibrium statistical mechanics has in it all
the ingredients of the classical and quantum theory described in terms of a continuous parameter
displaying all the dynamical regimes in between the two extreme cases. Finally, a simple application
of our scaled formalism consisting of reflection from a mirror by computing various quantities,
including probability density plots, scaled trajectories, and arrival times, was analyzed.
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1. Introduction

The most general formulation of quantum mechanics is given in terms of a density
operator, which is a statistical mixture of state vectors. Furthermore, in an open or compos-
ite quantum system, the system of interest is described by the reduced density operator,
which is obtained by tracing out the total density operator over the remaining degrees
of freedom.Using the method of protective measurements, Anandan and Aharonov have
proposed the observation of the density matrix of a single system, thus presenting a new
meaning of the density matrix in this context [1]. In this regard, it has been shown that
the density matrix can be consistently treated as a property of an individual system, not
of an ensemble alone [2]. In addition to the statistical (mixture) and reduced density ma-
trices, the conditional density matrix, which is conditional on the configuration of the
environment, has been discussed [3] and argued that the precise definition is possible only
in Bohmian mechanics.

Standard quantum mechanics is unable to provide an explanation for the
non-appearance of macroscopically distinguishable states. Different approaches have
been adopted in the literature to overcome this problem, the measurement problem, the
reduction or the collapse postulate, and the localization of the wave packet. Environmen-
tal decoherence theories [4–6] seek an explanation entirely within the standard quantum
mechanics while taking into account the crucial role played by the environment of the
quantum system. The whole system evolves under the usual Schrödinger equation. Then,
by tracing over the environmental degrees of freedom, a master equation is obtained for
the reduced density operator describing the system of interest, which contains parameters
such as the friction coefficient and the temperature of the environment. In the second
approach to the problem, the Schrödinger equation is modified in such a way that co-
herence is automatically destroyed when approaching to the macroscopic level. This has
been called “intrinsic“ decoherence by Milburn [7]. Perhaps the model introduced by
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Ghirardi, Rimini, and Weber [8] is the most widely known in this connection, where two
fundamentally distinct evolution equations of the standard quantum mechanics, i.e., the
unitary time evolution given by the Schrödinger equation in the absence of measurements
and the irreversible collapse rule, apply during a measurement and are merged in a unique
dynamical description.

On the other hand, Bohmian mechanics [9–12] are clearly a complementary, alternative,
and new interpretive way of introducing quantum mechanics, wherein they provide a clear
picture of quantum phenomena in terms of trajectories in configuration space. A smooth
transition could then be devised by considering the quantum classical transition differential
wave equation, due to Richardson et al. [13] for conservative systems. In doing so, the
corresponding dynamics are governed by a continuous parameter, the transition parameter,
which leads to a continuous description of any quantum phenomena in terms of trajectories
and scaled trajectories [14,15]. In other words, one is, thus, able to describe any dynamical
regime in between the quantum and classical ones in a continuous way by emphasizing
how this smooth process is established (a scaled Planck’s constant can then be defined from
the transition parameter covering the limit ˜̄h→ 0). Doing so, scaled trajectories also display
the well-known non-crossing property even in the classical regime. Chou applied this wave
equation to analyze wave–packet interference [16] and the dynamics of the harmonic and
Morse oscillators with complex trajectories [17]. Stochastic Bohmian and scaled trajectories
have also been discussed in the literature for open quantum systems [18]. Moreover, if
a time-dependent Gaussian ansatz is assumed for the probability density, Bohmian and
scaled trajectories are expressed as a sum of a classical trajectory (that is, a particle feature)
and a term containing the width of the corresponding wave packet (that is, a wave feature),
which has been called the dressing scheme [12]. Analogously, this scheme has also been
observed in the context of nonlinear quantum mechanics [19], where, for example, solitons
also display this wave–particle duality; appearing their wave property in the form of a
travelling solitary wave, and their corpuscle feature is analogous to a classical particle.

The procedure of using a continuous parameter to smoothly monitor the different
dynamical regimes in the theory recall us the well-known WKB approximation, widely
used for conservative systems. Several important differences are worth stressing. First,
the classical Hamilton–Jacobi equation for the action is obtained at zero order in the h̄-
expansion, whereas the so-called classical wave (nonlinear) equation [20] is reached by
construction. Second, the hierarchy of the differential equations for the action at different
orders of the same expansion is substituted by only a transition differential wave equation,
which can be solved in the linear and nonlinear domains. Third, the quantum to classical
transition for trajectories is carried out in a continuous and gradual way, thus stressing
the different dynamical regimes in between the quantum and classical ones. Fourth,
this continuous and smooth transition could also be thought as a gradual decoherence
process (let us say, internal decoherence; in this context, the decoherence process is used
only to stress the fact that we are approaching the classical limit, and no measurement is
carried out) due to the scaled Planck constant, thus allowing us to analyze what happens
at intermediate regimes [21]. However, decoherence effects have also been analyzed in
interference phenomena using a class of quantum trajectories based on the same grounds
as Bohmian ones, which is associated with the system-reduced density matrix [22]. Such a
study has been carried out for statistical mixtures and studied in the framework of Bohmian
mechanics [23] regarding the minimal view, i.e., without any reference to the quantum
potential. Even more, by writing the density matrix in the polar form, a Bohmian trajectory
formulation for dissipative systems has been proposed, where a double quantum potential
being a measure of the local curvature of the density amplitude is responsible for quantum
effects [24]. A different approach has been taken for the hydrodynamical formulation of
mixed states [25], where a local-in-space formulation has been adopted in the sense that a
hierarchy of moments contains the non-local information associated with the off-diagonal
elements of the density matrix.
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In the present article, our purpose is to provide a clear formulation of the pure and
mixed ensembles in terms of Bohmian mechanics by using the polar form of the density
matrix within the von Neumann equation framework. In this way, the corresponding
quantum potential is introduced, and a momentum vector field is defined for both forward
and backward in time motions. Once this is carried out, within the quantum classical
transition equation framework, a scaled Schrödinger equation is easily derived that leads
to the so-called scaled von Neumann equation. Afterwards, Moyal’s procedure [26] used
to interpret quantum mechanics as a statistical theory is then applied to the scaled theory
by considering a characteristic function, which is a standard function in statistical mechan-
ics [27]. The expectation value of the so-called Heisenberg–Weyl operator [28] is treated
as the characteristic function. Then, the inverse Fourier transform of the characteristic
function is considered as the probability distribution function, and its time evolution is
thus obtained. In this way, the classical Liouville equation is again derived within this
scaled theory. The foundations of nonequilibrium statistical mechanics are based on the
Liouville equation, which is associated with Hamiltonian dynamics (in general, in phase
space). In other words, with this theoretical analysis, we have clearly shown that scaled
statistical mechanics are well established and ready to be applied. This new nonequilibrium
statistical mechanics would be valid for any dynamical regime, going from the quantum to
the classical ones. As a simple illustration of our new formulation, scattering a statistical
mixture of Gaussian wave packets from a hard wall, was studied and compared to the cor-
responding superposed state. The application of the new scaled nonequilibrium statistical
mechanics will be postponed for use in future work.

2. Theory

When an isolated physical system is described by a density operator ρ̂ instead of a state
vector |ψ〉, the equation of motion ruled by the density operator is the so-called Liouville–
von Neumann equation or simply the von Neumann equation, which is written as

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂], (1)

where Ĥ is the Hamiltonian operator of the system, and [·, ·] represents the commutator of
two operators. For a single particle and in one dimension, this Hamiltonian is expressed as

Ĥ =
p̂2

2m
+ U(x̂), (2)

where the first term is the kinetic energy operator, and the second one is the external
interaction potential, U(x̂). This equation reads as

ih̄
∂

∂t
ρ(x, y, t) = − h̄2

2m

(
∂2

∂x2 −
∂2

∂y2

)
ρ(x, y, t) + (U(x)−U(y))ρ(x, y, t) (3)

in the position representation. Diagonal elements of the density matrix give probabilities,
while the non-diagonal elements represent coherences.

2.1. Pure Ensembles in the de Broglie–Bohm Approach

Before considering mixed ensembles, it is important first to look at pure ones in
the framework of the von Neumann equation. Density operator elements, in coordinate
representation, for the pure state ρ̂ = |ψ〉〈ψ| are given by ρ(x, y, t) = ψ(x, t)ψ∗(y, t), where
the wave function ψ(x, t) is governed by the Schrödinger equation

ih̄
∂

∂t
ψ(x, t) =

(
− h̄2

2m
∂2

∂x2 + U(x)

)
ψ(x, t), (4)
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and its complex conjugate ψ∗(y, t) is governed by the complex conjugation of the same
equation, i.e.,

−ih̄
∂

∂t
ψ∗(y, t) =

(
− h̄2

2m
∂2

∂y2 + U(y)

)
ψ∗(y, t). (5)

This equation reveals that ψ∗(y, t) is the wave function corresponding to the time-
reversed state [29]. By writing the wave function in its polar form

ψ(x, t) = a(x, t) eis(x,t)/h̄, (6)

a(x, t) and s(x, t) are both real functions of the amplitude and phase of the wave function,
respectively. By substituting this polar form in Equation (4) and splitting the resultant
equation in its real and imaginary parts, one obtains

− ∂

∂t
s(x, t) =

1
2m

(
∂

∂x
s(x, t)

)2
+ U(x) + q(x, t) (7a)

∂

∂t
(a(x, t))2 +

∂

∂x

(
(a(x, t))2 1

m
∂

∂x
s(x, t)

)
= 0, (7b)

which are respectively the generalized Hamilton–Jacobi and the continuity equations,
where

q(x, t) = − h̄2

2m
1

a(x, t)
∂2

∂x2 a(x, t) (8)

is the well-known quantum potential. These equations suggest the definition of the mo-
mentum field as

p(x, t) =
∂

∂x
s(x, t) (9)

and the velocity field as

v(x, t) =
1
m

p(x, t). (10)

Bohmian trajectories x(x(0), t) are, thus, constructed from the guidance equation as

dx
dt

= v(x, t)
∣∣∣∣
x=x(x(0),t)

, (11)

with x(0) being the initial position.
By applying the operator ∂x to Equation (7a) and using Equation (10), one reaches a

Newtonian-like equation according to

d
dt

p(x, t) = − ∂

∂x
(U(x) + q(x, t)), (12)

which shows that regarding q(x, t) as a potential on the same footing as U(x) is consistent.
Now, let us consider the evolution of ψ∗(y, t). As stated above, its evolution is gov-

erned by Equation (5) and expressed again in the polar form

ψ∗(y, t) = a′(y, t)eis′(y,t)/h̄. (13)

One has that
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−
(
− ∂

∂t

)
s′(y, t) =

1
2m

(
∂

∂y
(s′(y, t))

)2
+ U(y) + q′(y, t) (14a)

− ∂

∂t
(a′(y, t))2 +

∂

∂y

(
(a′(y, t))2 1

m
∂

∂y
s′(y, t)

)
= 0, (14b)

where

q′(y, t) = − h̄2

2m
1

a′(y, t)
∂2

∂y2 a′(y, t). (15)

By comparison to Equations (7a) and (7b), ∂t has been replaced by −∂t as the result of
the invariance or symmetry under time reversal. With respect to these new equations, one
defines the momentum field, in the y direction, as

p′(y, t) = − ∂

∂y
s′(y, t), (16)

which, using Equations (14a) and (14b), again yields a Newtonian-like equation

d
dt

p′(y, t) =
∂

∂y
(U(y) + q′(y, t)). (17)

Note that the minus sign in Equation (16) reflects the time-reversed dynamics in the
y direction [24]. However, note that a comparison between Equation (6) and Equation
(13)reveals that {

a′(y, t) = a(y, t) (18a)

s′(y, t) = −s(y, t), (18b)

and, as one expects, p′(y, t) = −p(y, t).
By subtracting Equation (14a) from Equation (7a) and using Equations (18a) and (18b),

we have that

− ∂

∂t
[s(x, t)− s(y, t)] =

{∂x[s(x, t)− s(y, t)]}2

2m
−
{∂y[s(x, t)− s(y, t)]}2

2m
+ [U(x)−U(y)]

− h̄2

2m
1

a(x, t)a(y, t)
(∂2

x − ∂2
y)[a(x, t)a(y, t)]. (19)

Multiplying Equation (7b) by (a′(y, t))2 and Equation (14b) by (a(x, t))2 and then
subtracting the resulting equations and using Equations (18a) and (18b) yield

∂

∂t
[a(x, t)a(y, t)]2 +

∂

∂x

(
[a(x, t)a(y, t)]2

1
m

∂

∂x
[s(x, t)− s(y, t)]

)
− ∂

∂y

(
[a(x, t)a(y, t)]2

1
m

∂

∂y
[s(x, t)− s(y, t)]

)
= 0. (20)

Note that the real functions a(x, t)a(y, t) and s(x, t) − s(y, t) appearing in
Equations (19) and (20) are the amplitude and phase of the pure density matrix, respectively,
where

ρ(x, y, t) = ψ(x, t)ψ∗(y, t) = a(x, t)a(y, t)ei(s(x,t)−s(y,t))/h̄. (21)

One could directly reach Equations (19) and (20) by introducing this polar form in the
von Neumann equation (3).
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2.2. Mixed Ensembles in the de Broglie–Bohm Framework

Let us now consider a mixed state. The hermiticity of the density operator ρ̂ implies

ρ(x, y, t) = ρ∗(y, x, t). (22)

From this property and the polar form of the density matrix

ρ(x, y, t) = A(x, y, t)eiS(x,y,t)/h̄, (23)

one has that{
A(x, y, t) = A(y, x, t) (24a)

S(x, y, t) = −S(y, x, t), (24b)

i.e., the amplitude (phase) of the density matrix is symmetric (antisymmetric) under the
x ↔ y interchange. Now, by introducing Equation (23) into the von Neumann equation (3)
and splitting the resultant equation in real and imaginary parts, one again obtains the
Hamilton–Jacobi equation for the phase

− ∂

∂t
S(x, y, t) =

[∂xS(x, y, t)]2

2m
−

[∂yS(x, y, t)]2

2m
+ [U(x)−U(y)] + Q(x, y, t) (25)

and the continuity equation

∂

∂t
A(x, y, t) +

1
m
(∂x A ∂xS− ∂y A ∂yS) +

1
2m

A(∂2
xS− ∂2

yS) = 0. (26)

For the amplitude,

Q(x, y, t) = − h̄2

2m
1

A(x, y, t)
(∂2

x − ∂2
y)A(x, y, t) (27)

is again the corresponding quantum potential. By defining the two-component momentum
vector field as

P(x, y, t) = (∂xS(x, y, t),−∂yS(x, y, t)), (28)

Equation (26) can be written in its compact form as

∂

∂t
A(x, y, t) + V(x, y, t) ·∇A(x, y, t) +

1
2

A(x, y, t) ∇ ·V(x, y, t) = 0 (29)

or

∂

∂t
A(x, y, t) +∇ · [A(x, y, t)V(x, y, t)]− 1

2
A(x, y, t) ∇ ·V(x, y, t) = 0, (30)

where we have introduced the velocity vector field

V(x, y, t) =
1
m

P(x, y, t). (31)

Equation (29) can, thus, be written as the usual continuity equation

∂

∂t
A(x, y, t)2 +∇ · [A(x, y, t)2V(x, y, t)] = 0 (32)
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for the conservation of A(x, y, t)2 in the two-dimensional space represented by x and y,
where

d
dt

∫ ∞

−∞

∫ ∞

−∞
dxdy A(x, y, t)2 = 0. (33)

Using Equations (28) and (25), one obtains the quantum Newton-like equation as

d
dt

P(x, y, t) =

(
∂

∂t
+ V(x, y, t) ·∇

)
P(x, y, t)

= −∇(U ±Q), (34)

where the + (−) sign inside the parentheses stands for x (y) component of the momen-
tum field.

If one uses the center of mass and relative coordinates according toR =
x + y

2
(35a)

r = x− y, (35b)

Equation (29) is rewritten as

∂

∂t
A(R, r, t)+

∂

∂R

(
A(R, r, t)

1
m

∂

∂r
S(R, r, t)

)
+

1
m

(
∂

∂R
S(R, r, t)

)(
∂

∂r
A(R, r, t)

)
= 0. (36)

Note that this equation can also be directly obtained from the von Neumann equation
in the (R, r) coordinates[

∂

∂t
+

h̄
im

∂2

∂R∂r
− U(R + r/2)−U(R− r/2)

ih̄

]
ρ(R, r, t) = 0. (37)

From Equation (24a), it is seen that A(R, r, t) is an even function of the relative coordi-
nate r, and, thus, its derivative with respect to r is odd under r → −r. This implies that
the last term of Equation (36) is zero for r = 0, i.e., when considering diagonal elements.
From this analysis, one arrives at

∂

∂t
A(x, t) +

{
∂

∂R

(
A(R, r, t)

1
m

∂

∂r
S(R, r, t)

)}∣∣∣∣
R=x,r=0

= 0 (38)

for the conservation of probability, i.e., diagonal elements of the density matrix
ρ(R = x, r = 0, t) = A(R = x, r = 0, t) ≡ A(x, t), from which the Bohmian velocity
field is obtained as follows

v(x, t) =
1
m

∂

∂r
S(R, r, t)

∣∣∣∣
R=x,r=0

. (39)

Note that this velocity field can also be deduced from the probability current density

j(x, t) =
h̄
m

Im

{
∂

∂x
ρ(x, y, t)

∣∣∣∣
y=x

}
(40)

through the ratio j(x, t)/ρ(x, t).
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2.3. The Scaled Von Neumann Equation: A Proposal for Quantum Classical Transition

In an effort to describe a quantum-to-classical continuous transition, the following
non-linear transition equation was proposed to be in the Schròdinger framework

ih̄
∂

∂t
ψε(x, t) =

[
− h̄2

2m
∂2

∂x2 + U(x) + (1− ε)
h̄2

2m
∂2

x|ψε(x, t)|
|ψε(x, t)|

]
ψε(x, t), (41)

which contains the so-called transition parameter ε going from one (quantum regime) to
zero (classical regime) and in between. By substituting the polar form RεeiSε/h̄ of the wave
function in Equation (41), splitting the resultant equation into its real and imaginary parts,
and introducing the scaled wave function ψ̃ = ψεei(1/

√
ε−1)Sε/h̄, after some straightforward

manipulations, one arrives at the equivalent scaled linear equation

i ˜̄h
∂

∂t
ψ̃(x, t) =

[
−

˜̄h2

2m
∂2

∂x2 + U(x)

]
ψ̃(x, t), (42)

which was shown elsewhere [13], with the so-called scaled Planck constant being

˜̄h =
√

ε h̄. (43)

This study has been generalized to dissipative systems in the framework of the
Caldirola–Kanai [15] and the Kostin or the Schrödinger–Langevin [14] equations. Here, our
purpose is to generalize this previous study to the von Neumann formalism of ensembles.

The last term of Equation (25), the quantum potential, is responsible for quantum
effects. Following Rosen [30], by subtracting this term to the von Neumann equation and
after again splitting the real and imaginary parts, we reach the classical Hamilton–Jacobi
equation, Equation (25), without the quantum potential. Because of this, we could call this
equation the classical von Neumann equation (a similar classical Liouville equation could
also be reached), which reads as follows

ih̄
∂

∂t
ρcl(x, y, t) = − h̄2

2m

(
∂2

∂x2 −
∂2

∂y2

)
ρcl(x, y, t) + (U(x)−U(y))ρcl(x, y, t)

+
h̄2

2m

[
1

|ρcl(x, y, t)|

(
∂2

∂x2 −
∂2

∂y2

)
|ρcl(x, y, t)|

]
ρcl(x, y, t), (44)

where the sub-index “cl” refers to “classical” and |ρcl(x, y, t)| means the modulus of
ρcl(x, y, t). Now, following [13], the transition equation is proposed to be

ih̄
∂

∂t
ρε(x, y, t) = − h̄2

2m

(
∂2

∂x2 −
∂2

∂y2

)
ρε(x, y, t) + (U(x)−U(y))ρε(x, y, t)

+ (1− ε)
h̄2

2m

[
1

|ρε(x, y, t)|

(
∂2

∂x2 −
∂2

∂y2

)
|ρε(x, y, t)|

]
ρε(x, y, t). (45)

From the polar form for the density matrix

ρε(x, y, t) = Aε(x, y, t) eiSε(x,y,t)/h̄, (46)

one obtains 
−∂Sε

∂t
=

(∂xSε)2 − (∂ySε)2

2m
+ U(x)−U(y)− ε

h̄2

2m
1

Aε
(∂2

x − ∂2
y)Aε (47a)

∂Aε

∂t
= − 1

2m
Aε(∂

2
x − ∂2

y)Sε −
1
m
(
∂x Aε ∂xSε − ∂y Aε ∂ySε

)
. (47b)
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Now, multiplying Equation (47a) by

ρ̃(x, y, t) = Aε(x, y, t) eiSε(x,y,t)/˜̄h (48)

and Equation (47b) by i ˜̄heiSε/˜̄h, and adding the resulting equations, after some straightfor-
ward algebra, one obtains

i ˜̄h
∂

∂t
ρ̃(x, y, t) = −

˜̄h2

2m

(
∂2

∂x2 −
∂2

∂y2

)
ρ̃(x, y, t) + (U(x)−U(y))ρ̃(x, y, t). (49)

This is the so-called scaled von Neumann equation. The form of this scaled equation
is exactly the same as that of the von Neumann equation. The only changes are that h̄ and
ρ have been replaced by the corresponding scaled quantities ˜̄h and ρ̃.

Thus, all requirements for solutions of the conventional Schrödinger equation (or the
von Neumann equation in the case of mixed states) must be fulfilled here too. Based on this
fact, we could stress the following two points: (i) the solution space is formed by square-
integrable functions. In fact, solutions must vanish at x → ±∞ faster than any power of x.
This is necessary to have a finite value for the expectation value ˜〈xn〉 =

∫ ∞
−∞ dx xn ρ̃(x, x, t).

In the example of scattering from a hard wall, which will be studied below, at least the
first two moments are finite; (ii) our solutions have at least two continuous derivatives, i.e,
they are doubly differentiable over our domain. However, the first derivative of the wave
function is not continuous at infinite discontinuities of the potential function, e.g., on hard
walls where the wave function is zero.

The structure of the continuity equation is the same, and one has

j̃(x, t) =
˜̄h
m

Im

{
∂

∂x
ρ̃(x, y, t)

∣∣∣∣
y=x

}
, (50)

for the scaled probability density current from which the scaled velocity is derived

ṽ(x, t) =
j̃(x, t)

ρ̃(x, x, t)
. (51)

Finally, the scaled trajectories are determined by integrating the guidance equation

dx̃
dt

= ṽ(x, t)
∣∣∣∣
x=x̃(x(0),t)

, (52)

with x(0) being the initial position of the particle.
We now consider Ehrenfest relations. We first write the scaled von Neumann equa-

tion (49) in the form

i ˜̄h
∂

∂t
ˆ̃ρ = [ ˆ̃H, ˆ̃ρ], (53)

where the scaled Hamiltonian operator in the position representation is

H̃ = −
˜̄h2

2m
∂2

∂x2 + U(x). (54)

Now, for the time derivative of the arbitrary time-independent observable Â, one
has that

d
dt
〈̃Â〉 = tr

(
∂ ˆ̃ρ
∂t

Â
)
=

1
i ˜̄h

tr([ ˆ̃H, ˆ̃ρ]Â) =
1
i ˜̄h

tr( ˆ̃ρ[Â, ˆ̃H]) =
˜〈[Â, ˆ̃H]〉

i ˜̄h
, (55)
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where we have used Equation (53) and the cyclic property of the trace operation. Note,
however, that one should take care of using this property when the dimension of the vector
space is infinite. Then, from Equation (55), one obtains the usual Ehrenfest relations

d
dt
〈̃x̂〉 = 〈̃ p̂〉 (56a)

d
dt
〈̃ p̂〉 =

˜〈
−∂U

∂x

〉
. (56b)

2.4. The Scaled Wigner–Moyal Approach

Moyal [26] attempted to interpret quantum mechanics as a statistical theory. He started
with the characteristic function, which is a standard tool of statistical theory but in the
unusual way [27]; the expectation value of the so-called Heisenberg–Weyl operator [28]
was treated as the characteristic function. Then, the inverse Fourier transform of the
characteristic function was considered to be the probability distribution function, and its
time evolution was, thus, obtained from the standard methods of statistical mechanics.
Interestingly enough, the same time evolution equation can be reached by starting from the
density operator leading to the standard quantum mechanical Liouville–von Neumann
equation. In spite of seemingly different starting points, Hiley [27] has shown they are, in
fact, the same starting point. We are going to follow the same procedure but in the scaled
theory context.

Using the Fourier transform of the scaled wavefunction, the corresponding pure scaled
density matrix can be written as

ρ̃(x, y, t) = ψ̃(x, t)ψ̃∗(y, t) =
1

2π ˜̄h

∫
dpdq φ̃(p, t) φ̃∗(q, t) ei(px−qy)/˜̄h, (57)

and, again using the R and r coordinates for space and, similarly, u = (p + q)/2 and
v = p− q for momentum, the density matrix can be transformed into

ρ̃(R, r, t) =
1

2π ˜̄h

∫
dudv φ̃(u + v/2, t)φ̃∗(u− v/2, t)ei(Rv+ru)/˜̄h

≡
∫

du W̃(R, u, t)eiur/˜̄h. (58)

This equation shows that the function W̃(R, u, t) is the partial Fourier transform of the
scaled density matrix ρ̃(R, r, t) with respect to the relative coordinate r. Thus, one has that

W̃(R, u, t) =
1

2π ˜̄h

∫
dr e−iur/˜̄hρ̃(R, r, t) (59)

=
1

2π ˜̄h

∫
dr e−iur/˜̄hψ̃(R + r/2, t)ψ̃∗(R− r/2, t),

which is just the scaled Wigner distribution function (see Ref. [31] for comparison). This
can be explicitly seen by changing the relative variable r → −r/2. The time evolution of
the scaled Wigner distribution function W̃(R, u, t) can be found from Equations (59) and
(49), written in the coordinates r and R, according to

∂

∂t
W̃(R, u, t) =

1
2π ˜̄h

∫
dr e−iur/˜̄h ∂

∂t
ρ̃(R, r, t)

=
1

2π ˜̄h

∫
dr e−iur/˜̄h

(
i ˜̄h
m

∂2

∂r∂R
+

U(R/2 + r)−U(R/2− r)
i ˜̄h

)
ρ̃(R, r, t)

= − u
m

∂

∂R
W̃(R, u, t) +

∫
du′K̃(R, u′ − u, t)W̃(R, u′, t), (60)
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where we have defined the kernel

K̃(R, q, t) =
1

2π ˜̄h

∫
dr eiqr/˜̄h U(R/2 + r)−U(R/2− r)

i ˜̄h
. (61)

Thus, one finally has that

∂W̃(x, p, t)
∂t

+
p
m

∂W̃(x, p, t)
∂x

=
∫

K̃(x, p− q)W̃(x, q, t)dq. (62)

In the so-called Wigner–Moyal approach to quantum mechanics and, as shown before,
Moyal’s starting point [26] is the Heisenberg–Weyl operator, which is defined as

M̂(θ, τ) = ei(θx̂+τp̂) = eiτp̂/2eiθx̂eiτp̂/2, (63)

and its expectation value, considered as the characteristic function, is

M(θ, τ) =
∫

dx ψ∗(x)eiτp̂/2eiθx̂eiτp̂/2ψ(x). (64)

Now, the same procedure could be followed in this context and written as

M̃(θ, τ) =
∫

dx ψ̃∗(x)eiτp̂/2eiθx̂eiτp̂/2ψ̃(x)

=
∫

dx ψ̃∗(x− ˜̄hτ/2) eiθx ψ̃(x + ˜̄hτ/2), (65)

wherein the phase space probability distribution function is the Fourier transform of the
characteristic function

W̃(x, p) =
1

(2π)2

∫ ∫
dτ dθ M̃(θ, τ)e−i(θx+τp)

=
1

2π

∫
dτ ψ̃∗(x− ˜̄hτ/2) e−iτp ψ̃(x + ˜̄hτ/2). (66)

In the second line of Equation (65), we have used the fact that the momentum operator
is the generator of translations. As Moyal proposed, one could also consider W̃(x, p) as
a distribution function and apply the corresponding standard methods of mechanical
statistics. Starting from the Heisenberg equation of motion

d
dt

˜̂M =
[ ˜̂M, ˜̂H]

i ˜̄h
, H̃ = −

˜̄h2

2m
∂2

∂x2 + U(x) (67)

for the scaled operator ˜̂M, and following Moyal’s original work [26], one anticipates

∂

∂t
W̃(x, p, t) =

2
˜̄h

sin
[ ˜̄h

2

(
∂

∂pW̃

∂

∂xH
− ∂

∂pH

∂

∂xW̃

)]
H(x, p)W̃(x, p, t), (68)

where H(x, p) is the classical Hamiltonian, and ∂/∂xW̃ and ∂/∂pW̃ operate only on W̃ and
so forth. In the classical limit ε → 0, this equation reduces to the well-known Liouville
equation for the phase space distribution function,

∂

∂t
Wcl(p, q, t) = {Wcl, H}PB, (69)

where {·, ·}PB stands for the Poisson bracket.
Thus, we have built a scaled nonequilibrium statistical mechanics equation from its

fundamentals, which takes into account, in a continuous and smooth way, all the dynamical
regimes in-between the two extreme case, as well as the quantum and classical ones.
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3. Results and Discussion

As a simple application of our theoretical formalism, let us consider scattering from a
hard wall at the origin

V(x) =

{
0 x < 0
∞ 0 ≤ x,

(70)

and two scaled Gaussian wave packets ψ̃a and ψ̃b with the same width σ0 but different centers
x0a and x0b (initially localized in the left side of the wall) and kick momenta p0a and p0b, i.e.,

ψ̃a(x, 0) =
1

(2πσ2
0 )

1/4
exp

[
− (x− x0a)

2

4σ2
0

+ i
p0a
˜̄h

x

]
(71a)

ψ̃b(x, 0) =
1

(2πσ2
0 )

1/4
exp

[
− (x− x0b)

2

4σ2
0

+ i
p0b
˜̄h

x

]
. (71b)

We build the superposition state at any time as

ψ̃(x, t) = Ñ ψ̃a(x, t) + ψ̃b(x, t)√
2

θ(−x) (72)

and the corresponding mixture as

ρ̃(x, y, t) =
ψ̃a(x, t)ψ̃∗a (y, t) + ψ̃b(x, t)ψ̃∗b (y, t)

2
θ(−x), (73)

where θ(x) is the step function, and Ñ is the normalization constant. Note that the unitary
evolution of the scaled wave functions under the corresponding von Neumann equation
keeps the purity of states, which is quantified from tr( ˜̂ρ2). By using now the propagator for
the hard wall potential [32]

G̃(x, t; x′, 0) = G̃f(x, t; x′, 0)− G̃f(−x, t; x′, 0), (74)

one obtains that

ψ̃(x, t) = (ψ̃f(x, t)− ψ̃f(−x, t))θ(−x), (75)

where the sub-index “f” stands for “free“, and the corresponding propagator is written as

G̃f(x, t; x′, 0) =

√
m

2πi ˜̄ht
exp

[
im
2˜̄ht

(x− x′)2
]

. (76)

Now, from Equation (75), one reaches

ψ̃a(x, t) =

{
1

(2πs̃2
t )

1/4
exp

[
− (x− xta)2

4σ0 s̃t
+ i

p0a
˜̄h
(x− xta) + i

p2
0at

2m ˜̄h
+ i

p0ax0a
˜̄h

]

+
1

(2πs̃2
t )

1/4
exp

[
− (x + xta)2

4σ0 s̃t
− i

p0a
˜̄h
(x + xta) + i

p2
0at

2m ˜̄h
+ i

p0ax0a
˜̄h

]}
θ(−x),

(77)

where 
s̃t = σ0

(
1 + i

˜̄ht
2mσ2

0

)
(78a)

xta = x0a +
p0a

m
t, (78b)
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being the complex width and the center of the freely propagating Gaussian wavepacket,
respectively. The same holds for the b component of the wave function when replacing
a by “b”.

In Figures 1 and 2, scaled probability density plots for the superposition of two
Gaussian wave packets, Equation (72), and for the mixed state, Equation (73), for different
dynamical regimes are shown: ε = 1 (left top panel), ε = 0.5 (right top panel), ε = 0.1 (left
bottom panel), and ε = 0.01 (right bottom panel). In both figures, the following initial
parameters were used for the calculations: m = 1, h̄ = 1, p0b = −p0a = 2, σ0b = σ0a = 1,
x0a = −5, and x0b = −15. As can clearly be seen in both cases, when the transition
parameter was approaching zero (the classical dynamics regime), the interference pattern
in collision between both states ,as well as in the scattering from the hard wall, tended to
be washed up in a continuous way. As one expects, when approaching the classical regime,
results for the pure and the mixed states also became closer.
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Figure 1. Scaled probability density plots for the superposition of two Gaussian wave packets,
Equation (72), for different regimes: ε = 1 (left top panel), ε = 0.5 (right top panel), ε = 0.1 (left
bottom panel), and ε = 0.01 (right bottom panel). We used as initial parameters, m = 1, h̄ = 1,
p0b = −p0a = 2, σ0b = σ0a = 1, x0a = −5 and x0b = −15.



Symmetry 2023, 15, 1184 14 of 19

-20 -15 -10 -5  0

x

 0

 2

 4

 6

 8

 10

t
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-20 -15 -10 -5  0

x

 0

 2

 4

 6

 8

 10

t

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-20 -15 -10 -5  0

x

 0

 2

 4

 6

 8

 10

t

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-20 -15 -10 -5  0

x

 0

 2

 4

 6

 8

 10

t

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Figure 2. Scaled probability density plots for the mixed state, Equation (73), for different regimes:
ε = 1 (left top panel), ε = 0.5 (right top panel), ε = 0.1 (left bottom panel), and ε = 0.01 (right
bottom panel). The same initial parameters as Figure 1 were used.

Let us discuss now how the scaled trajectories behaved in the different dynamical
regimes, going from Bohmian trajectories (ε = 1) to pure classical ones (ε = 0). In Figure 3,
a selection of scaled trajectories is plotted for the scaled wave function ψ̃(x, t) (left column)
and the scaled density matrix ρ̃(x, y, t) (right column) for the quantum regime (top panels)
and the nearly classical dynamical regime ε = 0.01 (bottom panels). The same units and
initial parameters were used as previously. Comparison with the Figures 1 and 2 reveals
that trajectories followed the wave packets. In addition, although it is not apparent from
our figure, if one had selected the distribution of the initial positions according to the Born
rule then he/she would have seen compact trajectories in regions with higher values of
probability distribution. In other words, if trajectories obey the Born rule initially, they
will do so forever. The non-crossing rule of trajectories was still observed at the nearly
classical regime ε = 0.01 and even in the classical regime, which is a consequence of the first
order classical theory in contrast to the true second order theory. As the classical regime
was approaching, the corresponding trajectories became more localized by simulating two
classical collisions—with the first one coming from the scattering between the two wave
packets and the second from the wall. However, only the wave packet starting closer to the
hard wall was reflected by the wall due to the second collision. As has also been discussed
elsewhere [33], wave packet interference can also be understood within the context of
scattering off effective potential barriers. In classical mechanics, one can always substitute
a particle–particle collision by that of an effective particle interacting with a potential. This
fact is clearly observed in this context both for the superposition wave packet as well as for
the density matrix.
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Figure 3. A selection of scaled trajectories for the scaled pure ψ̃(x, t) (left column) and the scaled
mixed state ρ̃(x, y, t) (right column) for the quantum regime ε = 1 (top panels) and the nearly
classical regime ε = 0.01 (bottom panels). The same initial parameters were used as in previous
figures.

From the non-crossing property of Bohmian trajectories, Leavens [34] proved that the
arrival time distribution is given by the modulus of the probability current density.

Following the same procedure for the scaled trajectories, one has that the scaled arrival
time distribution at the detector place X can be expressed as

Π̃(X, t) =
| j̃(X, t)|∫ ∞

0 dt′| j̃(X, t′)|
. (79)

Moreover, the mean arrival time at the detector location and the variance in the
measurement of the arrival time, which is also a measure of the width of the distribution,
are respectively given by

〈̃t〉 =
∫ ∞

0
dt′ t′ Π̃(X, t′) (80)

∆̃t =

√
〈̃t2〉 − 〈̃t〉

2
. (81)

As a result of the previous analysis in terms of scaled trajectories, these quantities are
easily calculated.

In Figure 4, scaled arrival time distributions have been plotted at the detector location
X = −30 for the pure state (72) (left top panel) and the mixed state (73) (left bottom
panel) for three different dynamical regimes: ε = 1 (green curve), ε = 0.1 (red curve), and
ε = 0.01 (black curve). On the right top and bottom panels, the scaled mean arrival time
and variance versus the transition parameter for the pure state (orange circled) and the
mixed state (violet triangle up) have been also displayed. As clearly seen, the mean arrival
time diminished when going from the quantum to classical regime. This is related to the
width of the probability distribution, which was wider for the quantum regime than for the
classical one. Furthermore, some differences between results coming from for the pure and
mixed states seemed to appear only around the quantum regime.
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Figure 4. Scaled arrival time distribution (79) at the detector location X = −30 for the pure state
(72) (left top panel) and the mixed state (73) (left bottom panel) for different regimes: ε = 1 (green
curve), ε = 0.1 (red curve), and ε = 0.01 (black curve). Right top (bottom) panel depicts the scaled
mean (uncertainty in) arrival time versus the transition parameter for the pure state (orange circled)
and the mixed state (violet triangle up). The same initial parameters were used as in previous figures.

In Figure 5, the expectation value of position operator (left top panel), the uncertainty
in position (right top panel), the expectation value of the momentum operator (left bottom
panel), and the product of uncertainties for the scaled mixed state ρ̃(x, y, t) for three
different dynamical regimes are shown: ε = 1 (green curves), ε = 0.5 (red curves), and
ε = 0.01 (black curves) are plotted. The same initial parameters were used as in previous
figures. This figure shows that the continuous transition from the quantum to classical
dynamical regime presented several global and important features: (i) reflection from the
wall was delayed on average; (ii) the average velocity in reflection decreased; (iii) the
uncertainty in position, which is also a measure of width of the state, diminished; and
(iv) the product of uncertainties also decreased at long times. Furthermore, the scaled
Heisenberg uncertainty relation ∆̃x∆̃p ≥ ˜̄h/2 =

√
εh̄/2 holding in any dynamical regime

can be proved straightforwardly starting from the definition of uncertainties and the scaled
von Neumann equation; this equation has the same mathematical form as the usual one
and, thus, everything goes fine. This relation, holding separately in all dynamical regimes,
does not compare different regimes with each other. The bottom right panel of Figure 5
confirms the fulfilment of this relation for all regimes. There was a time interval around
t ≈ 7 for which the product of uncertainties increased when approaching to the classical
regime. According to Figures 2, this time interval corresponds to the reflection time from
the wall.
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Figure 5. Expectation value of position operator (left top panel), uncertainty in position (right top
panel), expectation value of momentum operator (left bottom panel), and the product of uncertain-
ties (right bottom panel) for the scaled mixed state ρ̃(x, y, t) for three different dynamical regimes:
ε = 1 (green curves), ε = 0.5 (red curves), and ε = 0.01 (black curves). The same initial parameters
were used as in previous figures.

Numerical calculations showed that, during reflection from the wall, both uncertain-
ties became higher when approaching the classical regime. A rough explanation for this
seemingly unexpected result is the following. As top panels of Figure 2 show, the interfer-
ence pattern structure (light and dark regions) was seen during the reflection, around t ≈ 7,
from the wall for the quantum and nearby regimes, while the pattern was more or less
smooth in the classical and nearby regimes. In dark regions, ρ̃ ≈ 0, and, thus, these regions
did not have contributions to uncertainty, which itself is a measure of width of the distribu-
tion. Therefore, this width having some contribution only from light regions increased in
the reflection time for the classical regime in comparison with the quantum one.

An interesting quantity is the non-classical effective force, which is defined via

f̃nc =
d
dt
〈̃ p̂〉. (82)

From the mixture (73), one has that

〈̃ p̂〉 =
1
2
(〈̃ p̂〉a + 〈̃ p̂〉b), (83)

where 〈̃ p̂〉i is the expectation value of the momentum operator with respect to the com-
ponent wavefunction ψ̃i(x, t). From the scaled Schrödinger equation (42) and boundary
conditions on the wavefunction and its space derivative, one obtains

d
dt
〈̃ p̂〉i = −

˜̄h2

2m

∣∣∣∣∂ψ̃i
∂x

∣∣∣∣2∣∣∣∣
x=0

. (84)

Finally, from Equations (83) and (84), one has that

f̃nc = −1
2

˜̄h2

2m

(∣∣∣∣∂ψ̃a

∂x

∣∣∣∣2 + ∣∣∣∣∂ψ̃b
∂x

∣∣∣∣2
)∣∣∣∣

x=0
. (85)
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Classically, there is no force in the region x < 0. In this regime, particles’ momentums
reverse suddenly at the collision time with the hard wall; however, this is not the non-
classical case, as the left-bottom panel of Figure 5 shows. Only classical particles with initial
positive momentums, (in our case, particles described by ψ̃b) collide with the wall which,
for our initial parameters, the collision time was mx0b/p0b = 7.5.

4. Discussions and Conclusions

Along the last years, we have shown that scaled trajectories provide an alternative
and complementary view of the so-called quantum-to-classical (smooth) transition within
a theoretical scheme that is similar to the well-known WKB approximation. The (internal)
decoherence process is also well and continuously established when approaching the
classical limit. Note that we used “classical limit” in the sense of “classical-like behavior“,
and this does not necessarily imply that the system of interest is macroscopic. The tunnelling
effect, as well as the diffusion problem within the Langevin framework, were successfully
applied. In this work, we extended this theoretical formalism in the same direction to
propose a scaled Liouville–von Neumann equation and its Wigner representation, which
is precisely the first step to build a scaled nonequilibrium statistical mechanics function.
This was carried out following the same procedure proposed by Moyal a long time ago
in the context of standard quantum mechanics. This approach opens up new avenues
to develop that consist of, for example, a scaled Fokker–Planck equation, the analysis of
phase transitions, space-time correlation functions, master equations, reaction rates, and
the so-called Kramers’ problem, including kinetic models, linear response theory, projection
operators, mode-coupling theory, non-linear transport equations, and much more. For
example, the book by Zwanzig [35] could be a good guide to follow in the near future.
Note also that our scaled approach, in this context, was different from the environmental
decoherence or collapse models such as the well-known Ghirardi–Rimini–Weber model.
Here, the goal was not to find an explanation for the reduction postulatem but the proposal
for a scaled approach, which looks for describing a smooth transition from quantum-to-
classical mechanics in terms of a wave function or density matrix. For a discussion on the
measurement within the classical Schrödinger equation see, for example, Ref. [36], where,
by formulating the measurement theory in this non-linear context, it was argued that all
measurable properties of classical mechanics can be predicted by the quantum theory
based on the classical Schrödinger equation, without assuming the existence of particle
trajectories.
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